Geometry ELG HS.G.7: Define trigonometric ratios and solve problems involving right triangles. ## **Vertical Progression:** | 7 th Grade | 7.RP.A Analyze proportional relationships and use them to solve real-world and mathematical problems. 7.RP.A.2 Recognize and represent proportional relationships between quantities. 7.G.A Draw, construct, and describe geometrical figures and describe the relationships between them. 7.G.A.1 Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale. | |-----------------------|--| | 8 th Grade | 8.EE.B Understand the connections between proportional relationships, lines, and linear equations. 8.EE.B.6 Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation y = mx for a line through the origin and the equation y = mx + b for a line intercepting the vertical axis at b. 8.G.B Understand and apply the Pythagorean Theorem. 8.G.B.7 Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions. | | Geometry | ELG.MA.HS.G.7 Define trigonometric ratios and solve problems involving right triangles. G-SRT.6 Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles. G-SRT.7 Explain and use the relationship between the sine and cosine of complementary angles. G-SRT.8 Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.* | | Algebra 2 | ELG.MA.HS.F.9 Model periodic phenomena with trigonometric functions. F-TF.B.5 Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline.* ELG.MA.HS.F.10 Prove and apply trigonometric identities. F-TF.C.8 Prove the Pythagorean identity sin²(θ) + cos²(θ) = 1 and use it to find sin(θ), cos(θ), or tan(θ) given sin(θ), cos(θ), or tan(θ) and the quadrant of the angle. | ## Students will demonstrate command of the ELG by: - Determining specific ratios for sine, cosine, and tangent for specified angles in right triangles if all sides are known or if only two sides are known. - Explaining and using the relationship between the sine and cosine of complementary angles. - Using trigonometric ratios and the Pythagorean Theorem to solve right triangles in mathematical and applied problems. ### Vocabulary: - complementary angle - cosine - Pythagorean theorem - right triangle - similar triangles - sine - tangent - trigonometric ratios ### Sample Instructional/Assessment Tasks: ### 1) Standard(s): G-SRT.8 **Source: PARCC Geometry PBA Practice Test** #### **Item Prompt:** Mariela is standing in a building and looking out of a window at a tree. The tree is 20 feet away from Mariela. Mariela's line of site to the top of the tree creates a 42° angle of elevation, and her line of sight to the base of the tree creates a 31° angle of depression. What is the height, in feet, of the tree? #### Solution: 30 to 30.03 feet #### 2) Standard(s): G-SRT.C.7 Source: https://www.illustrativemathematics.org/content-standards/HSG/SRT/C/7/tasks/1443 #### **Item Prompt:** - **a.** Suppose $0^{\circ} < a < 90^{\circ}$ is the measure of an acute angle. Draw a picture and explain why $\sin a = \cos(90 a)$ - **b.** Are there any angle measures $0^{\circ} < a < 90^{\circ}$ for which $\sin a = \cos a$? Explain. #### **Correct Answers:** a. $$\sin 45^\circ = \cos 45^\circ = \frac{\sqrt{2}}{2}$$